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1. Introduction. Before the invention of public-key cryptography, a 1968 book
about time-sharing systems [124] first hinted at the possibility of a new type of cryp-
tography. The author described a new one-way cipher used by R. M. Needham in
order to enable a computer to verify passwords without storing information that an
intruder could use to impersonate a legitimate user.

In Needham’s system, when the user first sets his password, or whenever
he changes it, it is immediately subjected to the enciphering process, and it
is the enciphered form that is stored in the computer. Whenever the pass-
word is typed in response to a demand from the supervisor for the user’s
identity to be established, it is again enciphered and the result compared
with the stored version. It would be of no immediate use to a would-be
malefactor to obtain a copy of the list of enciphered passwords, since he
would have to decipher them before he could use them. For this purpose,
he would need access to a computer and even if full details of the encipher-
ing algorithm were available, the deciphering process would take a long
time. [124, pp. 91–92]

In 1974 the first detailed description of such a one-way function was published
[97]. Speaking informally, a one-to-one function f : X → Y is “one-way” if it is
easy to compute f(x) for any x ∈ X but hard to compute f−1(y) for most randomly
selected y in the range of f .1 In [97] the passwords and their enciphered forms were
regarded as integers modulo a large prime p, and the “one-way” map from Z/pZ to

∗Received by the editors December 23, 2003; accepted for publication (in revised form) August
9, 2004; published electronically October 29, 2004.

http://www.siam.org/journals/sirev/46-4/43919.html
†Department of Mathematics, Box 354350, University of Washington, Seattle, WA 98195 (koblitz@

math.washington.edu).
‡Department of Combinatorics & Optimization, University of Waterloo, Waterloo, ON N2L 3G1,

Canada (ajmeneze@uwaterloo.ca).
1In some situations one wants a one-way function to have a stronger property, namely, that it is

hard to compute any partial information about f−1(y) (for instance, whether it is an odd or even
number) for most randomly selected y.

599



600 NEAL KOBLITZ AND ALFRED J. MENEZES

Z/pZ was given by a polynomial f(x) which is not hard to evaluate by computer but
which takes an unreasonably long time to invert. In the paper, p = 264 − 59 and
f(x) = x224+17 + a1x

224+3 + a2x
3 + a3x

2 + a4x + a5, where the coefficients ai were
arbitrary 19-digit integers. At the time, one-way functions were used only to store
passwords and not to send scrambled messages.

Until the late 1970s, all cryptographic message transmission was by symmetric
key. This means that someone who has enough information to encrypt messages also
has enough information to decipher messages. As a result, any two users of the system
who want to communicate secretly must have exchanged keys in a safe way, perhaps
using a trusted courier.

The arena for applying mathematics to cryptography expanded dramatically when
Diffie and Hellman invented an entirely new type of cryptography, called public key
[32].2 At the heart of this concept is the idea of using a one-way function for encryp-
tion.

The functions used for encryption belong to a special class of one-way functions
that remain one-way only if some information (the decryption key) is kept secret.
Again using informal terminology, we can define a public-key encryption function
(also called a “trapdoor” function) as a map from plaintext message units to cipher-
text message units that can be feasibly computed by anyone having the public key
but whose inverse function (which deciphers the ciphertext message units) cannot be
computed in a reasonable amount of time without some additional information, called
the private key.

This means that everyone can send a message to a given person using the same
enciphering key, which can simply be looked up in a public directory whose contents
can be authenticated by some means. There is no need for the sender to have made
any secret arrangement with the recipient; indeed, the recipient need never have had
any prior contact with the sender at all.

A possible reason for the late development of the concept of public key is that
until the 1970s cryptography was used mainly for military and diplomatic purposes,
for which symmetric-key cryptography was well suited. However, with the increased
computerization of economic life, new needs for cryptography arose. Unlike in the
military or the diplomatic corps—with rigid hierarchies, long-term lists of authorized
users, and systems of couriers—in the applications to business transactions and data
privacy one encounters a much larger and more fluid structure of cryptography users.
Thus, perhaps public-key cryptography was not invented earlier simply because there
was no real need for it until recently.

Some of the purposes for which public-key cryptography has been applied are
1. confidential message transmission;
2. identification systems, where users prove that they are authorized to have

access to data or to a facility, or that they are who they claim to be;
3. authentication, which establishes that the message was sent by the person

claimed and that it hasn’t been tampered with;
4. nonrepudiation, which guards against people claiming not to have agreed to

something that they really agreed to;

2It is now known that some of the ideas published in [32] and also in [98] had been developed
in secret a few years before by the British intelligence services. However, they did not appear
to appreciate the importance of public-key cryptography or the possibility of signatures and other
applications. It was only with the publication of [32] and [98] that research in this area started to
flourish.
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5. key establishment, where two people using the open airwaves want to agree
upon a secret key for use in some symmetric-key cryptosystem;

6. electronic cash mechanisms that ensure spender anonymity;
7. electronic voting schemes that ensure that votes are confidential and correctly

tallied.
These tasks are performed through various types of protocols. The word “proto-

col” simply means an orderly procedure in which people send messages to one another.
The path from an academic proposal for a new type of mathematical cryptography

to its practical implementation is long and arduous. First of all, mathematicians
and cryptographers must become convinced that the underlying number-theoretic or
combinatorial problem upon which the system’s security relies is truly intractable.
The only way to be more-or-less sure of this is to wait while experts try to find
reasonably fast algorithms to break the cryptosystem; if they fail to do so after several
years of trying, then one might believe that the problem is most likely an intrinsically
difficult one. For example, most people believe that integer factorization, upon which
RSA (Rivest–Shamir–Adleman) cryptography is based (see section 3), is intractable
(for at least the next few years) for integers of more than 300 decimal digits.

It would be nice, of course, to be able to prove theorems that state that such
a problem cannot be efficiently solved. Ideally, such a theorem would show that the
currently known algorithms are close to best possible. But unfortunately no nontrivial
theorems of that sort have been proved for any of the problems whose intractability
is assumed in public-key cryptosystems.

There has been a lot of work recently on so-called provable security. However,
this is a misnomer. “Provable security” results have a conditional form: “If problem
X is intractable, then the cryptosystem Y is secure against attacks of type Z.” Note
that the intractability of the underlying mathematical problem is being assumed;
moreover, there is no assurance that cryptosystem Y will not succumb to an attack
of type Z ′, where Z ′ �= Z.

Even if a consensus emerges that the mathematical problem at the heart of a
newly proposed cryptosystem is really intractable, many other issues remain. One
must evaluate different methods of choosing parameters for the system. How big
must the numbers be? What are the “weak parameters” (parameters for which the
supposedly difficult problem becomes much easier) that must be avoided?

In the real world, a company’s credibility and large sums of money are at stake.
How can businesses protect themselves against liability if a cryptosystem that was
supposed to be secure is broken and thousands of credit card numbers are stolen? The
answer is that various “standards bodies” affiliated with professional organizations
such as ANSI, IEEE, and ISO, evaluate and make recommendations for the use of
approved cryptosystems. If companies use products that adhere to these guidelines,
then they are largely protected from any possible lawsuit if a system is broken. It
would be extremely risky for a company to sell a product with a type of cryptography
that has not been approved by the major standards bodies.

Standards bodies typically include representatives of various constituencies and
professional groups, not all of whom are knowledgeable about the mathematics of
cryptography. Before a cryptosystem is included in the recommendations of a stan-
dards body, a large number of people have the opportunity to raise objections either
to the cryptosystem in its entirety or to the proposer’s suggestions for implementation
(choice of parameters, methods of generating keys, etc.). Naturally, marketers of com-
peting cryptosystems have a strong incentive to find something wrong with the new
system. And no one wants to end up in the embarrassing situation of having approved
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a system that is broken a few months later. So it is not surprising that standards
bodies tend to be conservative and slow-moving. In the case of the most popular
current public-key cryptosystems, the time lags between academic publication of a
proposal for a type of cryptography and approval of specific recommendations for its
practical use were roughly 15 years.

We shall discuss in most detail the public-key cryptosystems that are of greatest
practical importance, but we shall also mention some other systems that are intrin-
sically interesting or that show some promise for the future. This survey will be
selective rather than exhaustive and will reflect our own tastes and judgments.

Researchers who have a computer science background might fault us for neglect-
ing foundational questions. Because cryptography is multidisciplinary, opinions about
the importance of certain lines of work often differ sharply. In particular, some math-
ematicians are skeptical about the value for practical cryptography of the theoretical
results that other researchers consider to be fundamental to the field. At the risk of
exaggerating, we might summarize the critics’ point of view as follows: there is no
such thing as a useful, nontrivial, unconditional theorem in cryptography. The theo-
rems that one can prove, the skeptics point out, generally have assumptions that are
so strong that the desired conclusion essentially becomes an immediate consequence.
Such theorems can clarify the relationship among various definitions and terms, but
because they lack true mathematical depth, they cannot provide any real assurance
of the security of a cryptosystem.

We do not entirely share this skeptical viewpoint, at least not in its most ex-
treme form. However, like most mathematicians working in cryptography, we prefer
a pragmatic rather than theoretical approach. Our views on the practical relevance
of “provable security” results are presented in more detail in our recent article [67].

2. Notions of Security. It is a subtle and complicated matter to evaluate the
security of a public-key cryptosystem. It is not enough to know that an adversary is
unlikely to be able to compute the inverse of the encryption function. Most successful
attacks on popular cryptosystems are more indirect than that. For example, suppose
that Alice is receiving messages that have been encrypted using RSA (see below). The
plaintext messages have to adhere to a certain format, and if a decrypted message is
not in that form, Alice’s computer transmits an error message to the sender. This
seems innocuous enough. However, Bleichenbacher [14] has shown that sometimes
such error messages could be used to compromise security.

A cryptographic protocol is said to be secure if an adversary cannot achieve certain
well-defined goals, that is, cannot compromise the system in a certain clearly stated
way. It is usually assumed that the adversary not only knows all the public keys, but
also has a complete description of the algorithms used to carry out the protocol. When
making a statement about the security of a protocol, one must explicitly delineate
the adversary’s capabilities, for example, its computational power and the nature of
its interactions with legitimate parties.

A protocol is considered robust if it can withstand attacks by adversaries who are
powerful and whose goals are modest. In contrast, the most obvious notion of security
for a public-key encryption scheme—that an adversary who is given a public key and
a ciphertext C derived with that public key is unable to determine (in a feasible
amount of time) the corresponding plaintext M—is actually quite weak. In practice
one might wish to prevent adversaries from meeting the less ambitious goal of being
able to determine any information whatsoever aboutM from C. This stronger notion,
called semantic security, was first studied systematically by Goldwasser and Micali
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[44]. Furthermore, the adversary may be permitted access to a decryption “oracle,”
that is, a black box from which it can obtain the decryption of any ciphertext of its
choice except, of course, the target ciphertext C. The relationships between various
notions of security for public-key encryption schemes were studied in [7].

In recent years, researchers have become increasingly aware of the possibility of
attacks that exploit specific properties of the implementation and operating environ-
ment. Such side-channel attacks utilize information leaked by the computing devices
during the execution of private-key operations such as decryption and signature gen-
eration. The kind of information that can be exploited includes execution time [68],
power consumption [69], electromagnetic radiation [2], induced errors [16], and error
messages [14, 76]. Such information may be difficult to obtain on some devices, such
as a workstation located in a secure office, but may be easy to obtain from other
devices, such as a smart card which draws power from an external, untrusted source.

We should caution that most of the cryptosystems described in the remainder of
the article are only primitives. In cryptography the term “primitive” means a basic
ingredient in a cryptosystem. In practice, one generally has to modify and combine
these primitives in a careful way so as to simultaneously achieve various objectives
related to efficiency and strong notions of security.

3. RSA. The public-key cryptosystem that has been in practical use the longest—
and is still the most popular system for electronic commerce—is RSA [98]. The basic
construction is rather simple. Let the n-bit integer N = pq be the product of two
large primes of roughly the same size. Typically, N has about 1000 bits, and p and q
each have about 500 bits.3

Let e and d be two integers satisfying ed ≡ 1 (mod ϕ(N)), where ϕ(N) = (p −
1)(q − 1) = N + 1 − (p + q) is the Euler ϕ-function of N , equal to the number
of integers 0 ≤ i < N that are relatively prime to N . These integers N, e, d are
called, respectively, the RSA modulus, the encryption exponent, and the decryption
exponent. The first two form the public key and are made publicly known. The integer
d, sometimes called the secret exponent, is the private key known only to the person
(Alice) who receives the enciphered message.

In practice, public-key encryption schemes are many times slower than their
symmetric-key counterparts. Thus, RSA is typically used either to encrypt a short
message (such as a credit card number) or else to encrypt a randomly chosen key k,
which in turn is used with a symmetric-key encryption scheme such as the Advanced
Encryption Standard (AES) to encrypt the message itself. The key k is usually quite
short (e.g., 128, 192, or 256 bits for the AES), and can therefore be regarded as an
integer M in the interval [0, N − 1].

To encrypt such a message unit M , the sender Bob computes the ciphertext C,
which is the least positive residue of Me modulo N . To decrypt C, the recipient
Alice computes the least positive residue of Cd modulo N . (These operations of
modular exponentiation can be carried out rapidly by means of a “repeated squaring”
method.) Using Euler’s theorem from elementary number theory, one can easily show
that Cd ≡Med ≡M (mod N).

Anyone who succeeds in factoring N = pq can immediately break RSA by finding
an inverse of e modulo (p − 1)(q − 1). For many years it was conjectured that,
conversely, the only way that RSA can be broken (in other words, the only way that

3It is easy to find random large primes by choosing random integers and performing tests on
them—either very efficient “strong primality” tests or the deterministic polynomial-time primality
test discovered in 2002 by M. Agrawal, N. Kayal, and N. Saxena.
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the encryption function can be inverted) is to factor N . However, work by Boneh and
Venkatesan [21] suggests that this conjecture might be false, that is, that the integer
factorization problem might be strictly harder than the problem of inverting the RSA
function M �→Me modulo N .

3.1. Signatures. A particularly attractive feature of RSA is that there is a nat-
ural way to digitally sign messages. Suppose that Alice sends a message to Bob and
wants to append a short “signature” S to her message that will convince Bob that
it was really Alice who sent the message and that the message he received was not
altered during transmission. Her whole message M might be long, consisting of a
large number of message units. Alice’s first step is to apply a publicly known hash
function toM . This is a functionM �→ H, where H is no longer than a single message
unit. The function must be easy to compute and must satisfy two properties: (1) it
must be computationally infeasible to find two different messages with the same hash
value, and (2) given H, it must be computationally infeasible to find any message
with hash value H.

Alice uses her RSA private key dAlice to form her signature. Namely, she sets S
equal to the least positive residue of HdAlice modulo NAlice. Bob, who has already
computed the hash value H of the message he received and who knows Alice’s public
key, can check that SeAlice ≡ H (mod NAlice). If this congruence holds, he knows that
no one but Alice could have composed the signature S (since no one else knows her
decryption exponent dAlice), and he also knows that the message he received could
not have been tampered with (because it has the same hash value as the message that
Alice sent).

3.2. Factorization Attack on RSA. The most basic attack on RSA consists of
factoring the modulusN = pq. The integer factorization problem has been the subject
of intense research, especially in the years since the invention of RSA in 1977. Let
N be an n-bit integer. Most of the subexponential-time algorithms—those that take
fewer than 2n

c

steps with c < 1—are of index calculus type. We now describe a simple
index calculus algorithm to factor N .

The method is based on the elementary observation that if x2 ≡ y2 (mod N),
then N = pq|(x+ y)(x− y), and so p and q each must divide either x+ y or x− y. If
x and y were formed independently of one another, then one expects that 50% of the
time the two primes will divide different factors, say p|x+ y, q|x− y. In that case we
can factor N by using the Euclidean algorithm to compute gcd(N,x+ y) = p.

We start the index calculus factoring algorithm by choosing a factor base F
consisting of all primes less than some bound B along with the number −1: F =
{p0, p1, . . . , pr}, where p0 = −1, p1 = 2, p2 = 3, . . . . We next choose positive integers
a < N (either randomly or according to some convenient criteria) and compute the
least absolute residue of a2. If this residue cannot be written as a product of numbers
in our factor base, we choose another value of a. We finally arrive at a system of
mod N relations of the form a2

i ≡
∏r

j=0 p
αi,j
j , i = 1, . . . , s. We try to form a product∏

i a
2νi
i ≡

∏
i,j p

νiαi,j
j , where νi ∈ {0, 1}, in such a way that we get a perfect square on

the right. In other words, we need each prime on the right to occur to an even power;
that is,

∑
i νiαi,j must be even for each j = 0, . . . , r. This amounts to solving a system

of r + 1 simultaneous equations in s unknowns over the field F2 = {0, 1}. Once we
have such a product, we can set x =

∏
i a

νi
i and y =

∏
j p

µj
j with µj = 1

2 (
∑

i νiαi,j).
Then x2 ≡ y2 (mod N), and there is a 50% chance that we can immediately factor
N . If we fail to factor N , we find another solution to the simultaneous equations over
F2, and try again.
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Example 1. Let N = 319, and choose F = {−1, 2, 3, 5, 7, 11, 13}. After squaring
some 2-digit numbers, we find that we can take ai, 1 ≤ i ≤ 7, equal to 17, 18, 19, 25,
27, 33, 36 because of the following relations mod 319:

172 ≡ −2 · 3 · 5, 182 ≡ 5, 192 ≡ 2 · 3 · 7, 252 ≡ −13,

272 ≡ 7 · 13, 332 ≡ 22 · 3 · 11, 362 ≡ 22 · 5.

The exponents of the pj in
∏

i a
2νi
i are the left sides of the following system of con-

gruences mod 2:

ν1 + ν4 ≡ 0,

ν1 + ν3 + 2ν6 + 2ν7 ≡ 0,

ν1 + ν3 + ν6 ≡ 0,

ν1 + ν2 + ν7 ≡ 0,

ν3 + ν5 ≡ 0,

ν6 ≡ 0,

ν4 + ν5 ≡ 0.

One solution for the ν-vector is (0, 1, 0, 0, 0, 0, 1), but that leads only to the trivial con-
gruence 102 ≡ 102 (mod N). We have better luck with the solution (1, 1, 1, 1, 1, 0, 0),
which gives (17 · 18 · 19 · 25 · 27)2 ≡ (2 · 3 · 5 · 7 · 13)2 (mod N), i.e., 1122 ≡
1782 (mod N). We now immediately compute gcd(319, 112 + 178) = 29, and factor
319 = 29 · 11.

It can be shown that the time required to factor an n-bit integer by the above
index calculus factorization method is of order 2n

1/2+ε
for any ε > 0. (More precisely,

the number of steps is exp(O(
√
n log n)).) Throughout the 1980s modifications and

generalizations were introduced that improved upon the performance of index calcu-
lus methods; however, no one was able to reduce the exponent of n below 1/2 + ε.
Even when Lenstra developed an exciting and conceptually very different factoriza-
tion method based on elliptic curves [74], asymptotically his method required roughly
the same amount of time as the index calculus algorithms. Some people wondered
whether the exponent 1/2+ε might be best possible for a general integer factorization
algorithm.

However, in the 1990s ideas of Pollard [95] led to a major breakthrough in fac-
torization, called the number field sieve. By carrying over index calculus to algebraic
number fields, it was possible to factor an arbitrary n-bit integer in time bounded by
2n

1/3+ε
for any ε > 0 . (More precisely, exp(O( 3

√
n log2 n)).) The number field sieve

is at present the fastest method for factoring an RSA modulus; the current record is
a number of 576 bits.

The reduction of the exponent of n from 1/2 + ε to 1/3 + ε has important conse-
quences in the long run. It means that even modest improvements in hardware and
software can significantly increase the size of the numbers that can be factored. For
this reason the current recommendation for implementation of RSA is to use numbers
of at least n = 1024 bits.

A recent research trend has been to design special-purpose hardware on which
factoring algorithms such as the number field sieve might be faster or more cost-
effective than on conventional general-purpose computers. Among the noteworthy
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proposals are Shamir’s TWINKLE machine (see [72]), Bernstein’s circuits [10], and
the TWIRL machine of Shamir and Tromer [108]. Shamir and Tromer [108] estimate
that the relation-generation stage of the number field sieve for factoring a 1024-bit
RSA modulus can be completed in less than a year by a machine that would cost about
$10 million to build, and that the linear algebra stage is easier. Such special-purpose
hardware has yet to be built (unless it has been built in secret), so it remains to be
seen if this work will have any impact on the size of RSA moduli used in practice.

3.3. Other Algorithmic Attacks on RSA. Most successful attacks on RSA are
not based on factoring the modulus N and do not result from the implementer’s use
of insufficiently large N . Rather, they exploit subtle features of the particular way in
which RSA is used. We give two examples; for a more thorough treatment, see [15].

First of all, suppose that Alice chooses a small value for her decryption exponent
d in order to speed up the decryption of messages sent to her and the signing of
messages that she sends. (Recall that both tasks require her to raise an integer to
the dth power modulo her n-bit modulus N .) If d is much smaller than N , this is a
very bad idea. Namely, Wiener [123] showed that if d has fewer than n/4 bits (more
precisely, if d < 1

3N
1/4), then an unauthorized person knowing only the public key

can efficiently compute d. Boneh and Durfee [17] raised the exponent of N to 0.292,
and they conjectured that if d < N1/2, then there should be an efficient algorithm to
determine d. Thus, Alice should always choose d with more than n/2 bits; preferably,
d should have n bits.

On the other hand, Alice can probably get away with choosing her public exponent
e (which is used to encrypt messages and also to verify signatures) to be small. In
fact, most implementations of RSA use e = 3 or e = 216 + 1 = 65537. But H̊astad
[49] found a flaw when e is small and Alice wants to broadcast the same message
M to a large number of users with their different public keys Ni and small public
exponents. Suppose, for instance, that all of the public exponents are e = 3. Then
an eavesdropper Eve who knows the ciphertext Ci sent to three different recipients
can recover the message M . To see this, suppose that M < Ni, i = 1, 2, 3 (otherwise
M has to be broken up into smaller message units). Eve knows the residue of M3

modulo each Ni, since that is precisely Ci. Using the Chinese remainder theorem, she
can then compute the residue of M3 modulo the product N1N2N3. But that residue
is equal to M3 itself, since M3 < N1N2N3. Once Eve knows the actual value of M3,
she can trivially extract the cube root to find M .

This difficulty—along with some others—can be avoided by padding messages,
that is, by inserting a short sequence of random symbols in message units before
sending them (in such a way that the recipient can easily delete the added symbols
before reading the text). Of course, a different random sequence must be inserted
each time Alice sends a message.

3.4. Side-Channel Attacks. We give an example of a power analysis attack on
the RSA signature scheme. Suppose that a smart card generates signatures using the
repeated squaring method for exponentiation. That is, if the binary representation
of the decryption exponent is d =

∑l
i=0 di2

i, then the smart card computes S =
Hd mod N as follows:

1. S ← 1.
2. For i from 0 to l do

If di = 1 then S ← S ·H mod N .
H ← H2 mod N .

3. Return(S).
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Because modular squaring and modular multiplication are usually implemented as
different routines (since the former is faster than the latter), it can be expected that
the power consumed by the smart card while performing a squaring has different char-
acteristics than when a multiplication is performed. These differences can sometimes
be visualized by plotting the power trace which shows the power consumed during
each clock cycle. Hence, examination of the power trace of the operation Hd mod N
can reveal the sequence of multiplication and squaring operations and thus the private
key d.

One way to counteract this attack is to insert dummy operations as follows so
that one squaring and one multiplication are performed during each iteration of the
main loop:

1. S0 ← 1.
2. For i from 0 to l do

S1 ← S0 ·H mod N .
S0 ← Sdi .
H ← H2 mod N .

3. Return(S0).
This countermeasure decreases efficiency and, moreover, may still allow other side-
channel attacks. The development of cost-effective and efficient countermeasures to
side-channel attacks is an ongoing research problem that is being tackled by both
cryptographers and engineers.

3.5. Deployment. RSA is the most widely deployed public-key cryptosystem
today. A common everyday use of RSA is in the Secure Sockets Layer (SSL) protocol
that is used by popular browsers such as Netscape and Internet Explorer for secure
web transactions such as credit card payments. SSL is used to assure an individual
user (called a client) of the authenticity of the web site (called the server) he or she
is visiting, and to establish a secure communications channel for the remainder of
the session. Web pages that are protected with SSL have addresses that start with
“https”. Web pages with addresses that start simply with “http” are not protected.

When a client first visits a secured web page (e.g., https://www.nsa.gov), the
server transmits its certificate to the client. Such a certificate has two components,
a data part containing the server’s identifying information and RSA public key, and
a signature part which is the RSA signature of a certifying authority that vouches
for the data part. It is assumed that the certifying authority has carefully verified
the server’s identity before issuing the certificate. Upon receipt of the certificate,
the client verifies the signature using the certifying authority’s public key, which is
preinstalled in the browser. A successful verification confirms the authenticity of the
server and of its RSA public key. Note that while the server is authenticated to the
client, there is no authentication of the client to the server. SSL does have client-
to-server authentication capability, but this is seldom used in practice because it is
difficult to implement a system to certify the public keys of individual users on a large
scale.

Next, the client selects a random session key, encrypts it with the server’s RSA
public key, and transmits the resulting ciphertext to the server. The server decrypts
the session key, which is then used with a symmetric-key cryptosystem to encrypt and
authenticate all sensitive data exchanged for the remainder of the session.

The establishment of a secure link is indicated by a closed padlock in the Netscape
and Internet Explorer browsers. Clicking on this icon reveals the server’s certificate
and information about the certifying authority.
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4. Knapsack. The knapsack problem, also known as the subset sum problem, is
the following: Given an n-tuple {vi} of positive integers and an integer V , find an
n-bit integer N = (εn−1εn−2 · · · ε1ε0)2, εi ∈ {0, 1}, such that

∑n−1
i=0 εivi = V , if such

an N exists. Note that there may be no solution N or many solutions, or there might
be a unique solution, depending on the n-tuple {vi} and the integer V .

A special case of the knapsack problem is the superincreasing knapsack. This is
the case when the vi, arranged in increasing order, have the property that each one is
greater than the sum of all of the earlier vi. For example, if vi = 2i, then the problem
is trivial; the unique solution is N = V .

It is known that the general knapsack problem is NP-hard.4 However, any super-
increasing knapsack problem is easy to solve. Namely, we look down the vi, starting
with the largest, until we get to the first one that is ≤ V . We include the corre-
sponding i in our subset I (in other words, we take εi = 1), replace V by V − vi, and
then continue down the list of vi until we find one that is less than or equal to this
difference. Continuing in this way, either we eventually obtain a subset of {vi} which
sums to V , or else we reach a step where we have V −

∑
i∈I vi equal to a positive

integer less than all of the remaining vi (or equal to a positive integer when there are
no remaining vi), in which case there is no solution.

We now describe how to construct the basic knapsack cryptosystem of Hellman
and Merkle [50]. We suppose that our plaintext message units are n-bit integers M .
Each user chooses a superincreasing n-tuple {v0, . . . , vn−1}, an integer m which is
greater than

∑n−1
i=0 vi, and an integer a prime to m, 0 < a < m. This is done by

some random process. The user then computes b = a−1 mod m (that is, b is the
least positive integer such that ab ≡ 1 (mod m)), and also computes the n-tuple {wi}
defined by wi = avi mod m (that is, wi is the least positive residue of avi modulo
m). The user keeps the numbers vi, m, a, and b all secret, but publishes the n-tuple
of wi. That is, the enciphering key is KE = {w0, . . . , wn−1}. The deciphering key
is KD = (b,m) (which, along with the enciphering key, enables one to determine
{v0, . . . , vn−1}).

Someone who wants to send a message M = (εn−1 · · · ε1ε0)2 to a user with enci-
phering key {wi} computes C = f(M) =

∑n−1
i=0 εiwi and transmits that integer. To

decipher the message, the recipient first finds the least positive residue V of bC modulo
m. Since bC =

∑
εibwi ≡

∑
εibavi ≡

∑
εivi (mod m), it follows that V =

∑
εivi.

(Here we are using the fact that both V < m and
∑

εivi ≤
∑

vi < m to convert
the congruence modulo m to equality.) It is then easy to find the unique solution
(εn−1 · · · ε0)2 =M of the superincreasing knapsack problem.

Note that an eavesdropper who knows only {wi} is faced with the knapsack prob-
lem C =

∑
εiwi, which is not a superincreasing problem, because the superincreasing

property of the n-tuple of vi is destroyed when vi is replaced by the least positive
residue of avi modulo m. Thus, at first glance, the unauthorized person seems to be
faced with a much harder problem.

For a while, many people were optimistic about the possibilities for the Merkle–
Hellman knapsack. Encryption and decryption are fast—much faster than in RSA.
Moreover, they hoped that, since the problem of solving a knapsack is NP-hard, the
system should be secure.

4This means that any problem P in a very broad class can be reduced to the general knapsack
problem. Roughly speaking, any algorithm for the knapsack can be modified to get an equally
efficient algorithm for P. If there were a polynomial-time algorithm for the knapsack problem, then
any such problem P would also be solvable in polynomial time, and the famous P �= NP conjecture
would be false.
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However, there was a fallacy in that reasoning. The type of knapsack problem
C =

∑
εiwi that must be solved, while not a superincreasing knapsack, is nevertheless

of a very special type, namely, it is obtained from a superincreasing problem by a
simple modular multiplication. In 1982, Shamir [107] found an algorithm to solve this
type of knapsack problem that is polynomial in n. Thus, the original Merkle–Hellman
cryptosystem is completely insecure.

One way around Shamir’s algorithm is to make the knapsack system a little more
complicated by using a sequence of transformations of the form x �→ ax mod m for
different a and m. However, Brickell [22] generalized Shamir’s attack to all such
“low-density” knapsacks (see also [23] and [88]).

A few years later Chor and Rivest [27] developed a type of knapsack cryptosystem
that did not use low-density knapsacks and remained unbroken for a decade. The
Chor–Rivest system is based on the multiplicative structure of the finite field Fpm
of pm elements, where one might choose, for example, p = 197, m = 24. Alice’s
public key {w1, . . . , wn} that Bob uses to encipher an n-bit message {ε1, . . . , εn} is
obtained as follows (here we give a simplified version of the actual construction).
Alice represents elements of Fpm = Fp[X]/f(X), where f(X) is a fixed irreducible
polynomial of degree m, as polynomials of degree less than m. Let g be a generator
of F∗pm , and let π be a fixed secret permutation of {1, . . . , n}. Then for i = 1, . . . , n
Alice lets wi, 1 ≤ wi < q − 1, be integers such that gwi = X + π(i) in Fp[X]/f(X).
Bob encrypts a message by setting C =

∑
εiwi, and Alice decrypts by factoring the

polynomial gC =
∏
(X + π(i))εi in Fp[X]. Although the cryptosystem seemed much

harder to attack than the low-density knapsack systems, in 1998 it was broken by
Vaudenay [119].

Shamir’s complete breaking of the original Merkle–Hellman knapsack in 1982 was
a jolting experience for the nascent academic cryptographic research community of
the time. A promising public-key system, which was more efficient than RSA and
seemingly more secure as well (since RSA is not based on an NP-hard problem), was
totally demolished by Shamir’s paper four years after it was invented. And subsequent
attempts to rescue the knapsack idea fared no better.

There are at least two general lessons to be learned here. First, when a proposer’s
original version of a cryptosystem is successfully attacked, often it is futile to thwart
this attack by tweaking the system a little—by changing the parameters or inserting
a new layer of complexity. The success of the attack possibly indicates a fundamental
weakness in the system, in which case modified versions will succumb to variants or
generalizations of the original attack.

A second lesson is to be skeptical of theoretical arguments for the security of
a system. Concepts of complexity theory such as NP-hardness do not necessarily
have direct relevance to cryptography. Since the time of the ancient Greeks, our
model of mathematical elegance has been a rigorously proved theorem. However,
in cryptography such theoretical results—often appearing with the name “provable
security”5—are sometimes less convincing than a decade or two of computational
experience attempting unsuccessfully to break a system.

5. Discrete Logarithm Cryptosystems. Another type of public-key crypto-
graphic system is based on the discrete logarithm problem (DLP) in a finite field.
Let Fq denote the field of q elements, and let g ∈ F∗q be a fixed element, not necessar-
ily a generator. The DLP in F∗q to the base g is the following problem: Given y ∈ F∗q ,

5Lars Knudsen once commented, “If it’s provably secure, then it probably isn’t.”
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find an integer x such that y = gx (or, if y is not in the subgroup generated by g,
determine that no such integer exists; but in cryptographic applications y is always a
power of g).

5.1. The Diffie–Hellman Key Exchange. The Diffie–Hellman key exchange [32]
works as follows. Suppose that Alice and Bob want to agree upon a key, perhaps for
use in some symmetric-key cryptosystem. This must be done using open communi-
cation channels. That is, an eavesdropper Eve knows everything that Alice sends to
Bob and everything that Bob sends to Alice.

Alice and Bob first agree on a finite field Fq and a base element g of order N ,
where N |q−1. Their communication is public, so Eve also has this information. Next,
Alice secretly chooses a random positive integer kAlice < N , computes gkAlice ∈ F∗q ,
and sends this to Bob. Meanwhile, Bob does likewise: he sends gkBob ∈ F∗q to Alice,
while keeping kBob secret. The agreed upon key will then be the element

gkAlicekBob ∈ F∗q ,

which Bob can compute by raising the field element he received from Alice to his
secret kBob-th power, and Alice can compute by raising the field element she received
from Bob to the kAlice-th power. This works because in F∗q we have

gkAlicekBob =
(
gkAlice

)kBob =
(
gkBob

)kAlice
.

In this way Alice and Bob have arrived at a common randomly generated element
of the subgroup of F∗q generated by g. If they want their key to be a large integer or
sequence of bits, they can agree upon a simple function from Fq to the integers that
will convert the shared key to the desired form.

The problem facing the adversary Eve is the so-called Diffie–Hellman problem:
Given g, gkA , gkB ∈ F∗q , find gkAkB . It is easy to see that anyone who can solve
the DLP in F∗q can then immediately solve the Diffie–Hellman problem as well. The
converse is not known. That is, it is conceivable (though thought to be unlikely) that
someone could invent a way to solve the Diffie–Hellman problem without being able
to find discrete logarithms. In other words, breaking the Diffie–Hellman key exchange
has not been proven to be equivalent to solving the DLP. For partial results supporting
the conjectured equivalence of the two problems, see [19] and [79]. In practice it is
probably safe to assume that the Diffie–Hellman key exchange is secure provided that
the discrete logarithm problem is intractable.

Because of the Pohlig–Hellman algorithm [93], the order N of the base element
should be either prime or “almost prime” (the product of a prime and a very small
integer).

5.2. The Digital Signature Algorithm (DSA). In 1991 the U.S. government’s
National Institute of Standards and Technology proposed a digital signature standard
using a Digital Signature Algorithm (DSA) based on the DLP in a prime field Fp.

To set up the scheme, each user Alice proceeds as follows:
1. she chooses a prime N of about 160 bits (using a random number generator

and a primality test);
2. she then chooses a second prime p that is congruent to 1 modulo N and has

at least 1000 bits;
3. she chooses a generator g of the cyclic subgroup of F∗p of order N (by com-

puting g(p−1)/N
0 mod p for a random integer g0; if this number is not equal to

1, it will be a generator);
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4. she takes a random integer x in the range 0 < x < N as her secret key, and
sets her public key equal to y = gx mod p.

Now suppose that Alice wants to sign a message. Using a hash function that takes
positive integer values less than N , she computes the hash value H of her message.
She next picks a random integer k in the same range 0 < k < N , computes gk mod p,
and sets r equal to the least nonnegative residue modulo N of the latter number
(that is, gk is first computed modulo p, and the result, regarded as an integer in
{0, 1, . . . , p − 1}, is then reduced modulo the smaller prime N). Finally, Alice finds
an integer s such that sk ≡ H + xr (mod N). (This just involves multiplying the
number on the right by the inverse of k modulo N .) Her signature is the pair (r, s)
of integers modulo N .

To verify the signature, the recipient Bob computes the hash value H and then
u1 = s−1H mod N and u2 = s−1r mod N . He then computes gu1yu2 mod p. If the
result agrees modulo N with r (as it should, since gu1+xu2 = gk), he is satisfied. He
accepts the signature because he is confident that only someone who knew Alice’s
secret key x—presumably, this means only Alice—could have formed the signature.
He also knows that the message has not been tampered with, since the hash value H
of the message he received is the same as the hash value of the message that Alice
sent.

The only way known to forge a DSA signature is to find discrete logs in F∗p. This
requires roughly the same amount of time as factoring a positive integer that has the
same size as p. In fact, the fastest method available at present to solve the DLP in
Fp is a variant of the same technique—the number field sieve—that can factor the
largest integers [46].

The DSA has the advantage that signatures are fairly short, consisting of two
numbers of 160 bits (the magnitude of N). By comparison, the RSA signature in
section 3.1 is about three times as long. The security of the system depends upon
intractability of the DLP in the multiplicative group of the rather large field Fp.
Although to break the system it would suffice to find discrete logs in the smaller
subgroup generated by g, in practice this seems to be no easier than finding arbitrary
discrete logarithms in F∗p. Thus, the DSA seemed to have attained both a high level
of security and low signature storage and implementation time. However, recently
the DSA has been superseded by the ECDSA, which is a similar system based on the
group of an elliptic curve rather than a finite field. This signature scheme will be
described in the next section.

6. Elliptic Curve Cryptography. Elliptic curves have been extensively studied
for almost two centuries, and there is a vast literature on the topic. Research into
number-theoretic questions concerning elliptic curves was originally pursued mainly
for aesthetic reasons. But in recent decades such questions have become important
in several applied areas, including coding theory, pseudorandom number generation,
and integer factorization.

In 1985, Koblitz [61] and Miller [84] independently proposed using the group of
points on an elliptic curve defined over a finite field in discrete log cryptosystems.
The primary advantage that elliptic curve systems have over systems based on the
multiplicative group of a finite field (and also over systems based on the intractability
of integer factorization) is the absence of a subexponential-time algorithm (such as
those of index calculus type) that could find discrete logs in these groups. Conse-
quently, one can use an elliptic curve group that is smaller in size while maintaining
the same level of security. The result is potentially smaller key sizes, bandwidth sav-
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ings, and faster implementations, features which are especially attractive for security
applications where computational power and integrated circuit space are limited, such
as smart cards and wireless devices.

6.1. Background on Elliptic Curves. Assume first that F is a field of character-
istic not equal to 2 or 3. An elliptic curve E over F is an equation

(1) y2 = x3 + ax+ b,

where a, b ∈ F and 4a3 + 27b2 �= 0 (the latter condition ensures that the cubic on
the right does not have multiple roots). If K is a field containing F, then the set of
K-points of E, denoted E(K), consists of all solutions (x, y) ∈ K×K of (1) together
with a special point ∞ called the point at infinity.

It is well known that E(K) is an (additively written) abelian group with the point
∞ serving as its identity element. The rules for group addition are summarized below.

Addition Formulas for the Curve (1). If P = (x1, y1) ∈ E, then−P = (x1,−y1).
If Q = (x2, y2) ∈ E, Q �= −P , then P +Q = (x3, y3), where

x3 = λ2 − x1 − x2,

y3 = λ(x1 − x3)− y1,

and

λ =




y2 − y1

x2 − x1
if P �= Q,

3x2
1 + a

2y1
if P = Q.

There is a nice classical way—called the chord and tangent construction—to vi-
sualize the group law on an elliptic curve defined over the real numbers. We illustrate
with the elliptic curve y2 = x3 − x, pictured in Figure 1.

To add two points P and Q, we draw a chord between them and find its third
point of intersection with the curve. The point R symmetric to this point with respect
to the x-axis is the sum P +Q. If Q = P , then instead of a chord we take the tangent
line to the curve at P .

For k a positive integer and P a point we use the notation kP to denote P added
to itself k times.

If F is a field of characteristic 3, then we have an equation similar to (1) but with
an x2-term which cannot be eliminated by a linear change of variables. The formulas
for point addition are similar to the ones above.

Elliptic curves defined over a finite field are of two types. Most are what are
called ordinary or nonsupersingular curves, but a small number are supersingular. If
F is a field of characteristic 2, then a supersingular elliptic curve E is an equation

y2 + cy = x3 + ax+ b,

where a, b, c ∈ F, c �= 0, together with the point at infinity∞; and a nonsupersingular
elliptic curve E is an equation

y2 + xy = x3 + ax2 + b,
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(a) Addition: P +Q = R. (b) Doubling: P + P = R.

Fig. 1 Geometric addition and doubling of elliptic curve points.

where a, b ∈ F, b �= 0, together with the point at infinity ∞. In both cases, E(K) for
any K ⊃ F is an abelian group with the point∞ serving as the identity. The addition
formulas for the two types of curves in characteristic 2 are similar to the ones given
above for equation (1).

If E is defined over a finite field Fq, then E(Fq) is a finite abelian group of rank 1
or 2; in other words, either it is cyclic or else a product of two cyclic groups. We have
E(Fq) ∼= Cn1 ⊕ Cn2 , where Cn denotes a cyclic group of order n, n2 divides n1, and
furthermore n2|q − 1. A well-known theorem of Hasse (see [110, p. 131]) states that
the cardinality #E(Fq) = q+1− t, where |t| ≤ 2

√
q. We call [q+1−2√q, q+1+2

√
q]

the Hasse interval. The curve E is said to be supersingular if t2 = 0, q, 2q, 3q, or 4q;
otherwise the curve is nonsupersingular.

When q is a power of 2, this agrees with the definition given earlier. In that case
#E(Fq) is odd if E is supersingular and even if E is nonsupersingular.

A result of Waterhouse [122] states that if q is a prime, then for each t satisfying
|t| ≤ 2

√
q there exists at least one elliptic curve E defined over Fq with #E(Fq) =

q+1− t. If q is a power of 2, then for each even t satisfying |t| ≤ 2
√
q there exists at

least one (nonsupersingular) elliptic curve E defined over Fq with #E(Fq) = q+1− t.
Schoof [105] derived a formula for the number of isomorphism classes of elliptic curves
defined over Fq with #E(Fq) = q + 1− t for each t satisfying |t| ≤ 2

√
q.

Example 2 (elliptic curve over F11). Consider the elliptic curve E : y2 =
x3 +2x+4 defined over F11. Then #E(F11) = 17, and E(F11) is cyclic. A generator
of E(F11) is P = (0, 2). The points in E(F11), expressed as multiples of P , are shown
below:

P = (0, 2), 2P = (3, 2), 3P = (8, 9), 4P = (6, 1), 5P = (9, 5),
6P = (7, 3), 7P = (2, 4), 8P = (10, 10), 9P = (10, 1), 10P = (2, 7),
11P = (7, 8), 12P = (9, 6), 13P = (6, 10), 14P = (8, 2), 15P = (3, 9),
16P = (0, 9), 17P =∞.
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6.2. Elliptic Curve Cryptosystems. Discrete log cryptosystems were first de-
scribed in the setting of the multiplicative group of the integers modulo a prime p.
Such systems can be modified to work in the group of points on an elliptic curve.6

For instance, the Diffie–Hellman key exchange can be adapted for elliptic curves as
follows. First note that a random point on an elliptic curve E can serve as a key,
since Alice and Bob can agree in advance on a method to convert it to an integer (for
example, they can take the image of its x-coordinate under some agreed upon simple
map from Fq to the natural numbers).

So suppose that E is an elliptic curve over Fq, and P is a publicly known point
on the curve. Alice secretly chooses a random integer kA and computes the point
kAP , which she sends to Bob. Likewise, Bob secretly chooses a random kB , computes
kBP , and sends it to Alice. The common key is Q = kAkBP . Alice computes Q by
multiplying the point she received from Bob by her secret kA; Bob computes Q by
multiplying the point he received from Alice by his secret kB . An eavesdropper who
wanted to spy on Alice and Bob would have to determine Q = kAkBP knowing P ,
kAP , and kBP , but not kA or kB . The eavesdropper’s task is called the elliptic curve
Diffie–Hellman problem (ECDHP).

It is not hard to modify this Diffie–Hellman key exchange protocol for the purpose
of message transmission, using an idea of ElGamal [33]. Suppose that the set of
message units has been imbedded in E in some agreed upon way, and Bob wants
to send Alice a message M ∈ E. As in Diffie–Hellman, Alice has already randomly
generated a secret key kA and computed her public key kAP . Bob now chooses another
secret random integer l and sends Alice the pair of points (lP,M + l(kAP )). (Notice
that ElGamal encryption is probabilistic rather than deterministic.) To decipher the
message, Alice multiplies the first point in the pair by her secret kA and then subtracts
the result from the second point in the pair.

We next describe the elliptic curve digital signature algorithm (ECDSA), which
is analogous to the DSA in section 5.2.

ECDSA Key Generation. E is an elliptic curve defined over Fq, and P is a point
of prime order N in E(Fq); these are system-wide parameters. For simplicity, we shall
suppose that q is a prime, although the construction can easily be adapted to a prime
power q as well. Each user Alice constructs her keys by selecting a random integer x
in the interval [1, N − 1] and computing Q = xP . Alice’s public key is Q; her private
key is x.

ECDSA Signature Generation. To sign a message having hash value H, 0 <
H < N , Alice does the following:

1. She selects a random integer k in the interval [1, N − 1].
2. She computes kP = (x1, y1) and sets r equal to the least nonnegative residue

of x1 mod N (where x1 is regarded as an integer between 0 and q−1). (Note:
If r = 0, then she must go back to step 1 and select another k.)

3. She computes k−1 mod N and sets s equal to the least nonnegative residue
of k−1(H + xr) mod N . (Note: If s = 0, then she must go back to step 1.)

The signature for the message is the pair of integers (r, s).

ECDSA Signature Verification. To verify Alice’s signature (r, s) on a message,
Bob should do the following:

1. Obtain an authenticated copy of Alice’s public key Q.

6Or, indeed, in any finite group. However, such a discrete log cryptosystem is worth considering
only if there is reason to believe that it is safe from attack; see section 6.3.
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2. Verify that r and s are integers in the interval [1, N − 1], and compute the
hash value H of the message.

3. Compute u1 = s−1H mod N and u2 = s−1r mod N .
4. Compute u1P + u2Q = (x0, y0) and, regarding x0 as an integer between 0

and q − 1, set v equal to the least nonnegative residue of x0 mod N .
5. Accept the signature if and only if v = r.
Notice that if Alice generated her signature correctly, then u1P + u2Q = (u1 +

xu2)P = kP because k ≡ s−1(H + xr) (mod N), and so v = r.
To obtain a security level similar to that of DSA, the parameter N should have

about 160 bits. If this is the case, then DSA and ECDSA signatures have the same
bitlength (320 bits). The main advantage of ECDSA over DSA is that operations are
performed in a much smaller field Fq.

Instead of using the same elliptic curve for everyone, we could fix the underlying
finite field Fq for all users and let each select her own elliptic curve E and point
P ∈ E(Fq). In this case, the coefficients of the defining equation for E, the point P ,
and the order N of P must also be included in a user’s public key. If the underlying
field Fq is fixed, then hardware or software can be built to optimize computations
in that field. At the same time, there are an enormous number of choices of elliptic
curves E over the fixed Fq.

6.3. Security. The basis for the security of elliptic curve cryptosystems such as
ECDSA and ElGamal encryption is the apparent intractability of the following elliptic
curve discrete logarithm problem (ECDLP): Given an elliptic curve E defined over Fq,
a point P ∈ E(Fq) of order N , and a point Q ∈ E(Fq), determine the integer x,
0 ≤ x ≤ N − 1, such that Q = xP , provided that such an integer exists.

The Pohlig–Hellman algorithm [93] reduces the determination of x to the deter-
mination of x modulo each of the prime factors of N . Hence, in order to achieve
the maximum possible security level, N should be prime. The best general-purpose
algorithm known to date for the ECDLP is the Pollard-ρ method [94], which takes
fewer than N1/2+ε = 2(1/2+ε)n steps if N is an n-bit prime. We now describe this
method.

Given P and Q in a cyclic order-N subgroup G ⊂ E(Fq), we want to find x such
that Q = xP . First, partition G = S1 ∪ S2 ∪ S3 randomly into three sets of roughly
equal size. Select X0 = a0P + b0Q with random a0, b0.

Construct a recursive sequence of points,

Xi+1 =



Q+Xi if Xi ∈ S1,

2Xi if Xi ∈ S2,

P +Xi if Xi ∈ S3,

and recursive sequences of integers,

ai+1 =



ai if Xi ∈ S1,

2ai if Xi ∈ S2,

ai + 1 if Xi ∈ S3

and

bi+1 =



bi + 1 if Xi ∈ S1,

2bi if Xi ∈ S2,

bi if Xi ∈ S3.
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Fig. 2 ρ-like shape of the sequence {Xi} in the Pollard-ρ method, where t = tail length and s =
cycle length.

Then Xi = aiP + biQ for all i. The idea is that this sequence eventually becomes
periodic. Figure 2 shows how the ρ-method got its name.

Once we find i and j such that Xi = Xj we have

Xi = aiP + biQ = (ai + xbi)P = Xj = (aj + xbj)P,

and hence

ai + xbi ≡ aj + xbj (mod N),

from which x mod N can immediately be determined (except in the very unlikely
event that bi ≡ bj (mod N)).

In order to greatly reduce storage, in practice one looks for a match between Xi

and X2i. This slightly increases the running time, but reduces the storage almost
to zero. It was a crucial observation (due to Pollard) that the search for a match
between Xi and Xj—which would require storage of order O(

√
N)—can be replaced

for a search for a match between Xi and X2i. Otherwise, the ρ-method would have
been no better than an earlier deterministic matching method of D. Shanks called
“baby step–giant step” that takes roughly the same amount of time and requires
O(
√
N) storage.
Assuming that the above map from Xi to Xi+1 behaves like a random mapping,

a match can be found by the time i reaches O(
√
N). Much research has been devoted

to improving the Pollard-ρ method (see, for example, [116]). The general form of the
estimate for the number of steps remains O(

√
N) even after all the modifications.

Thus, the aim of this work is to reduce the constant in O(
√
N).

For certain elliptic curves ECDLP algorithms have been found that are faster
than Pollard-ρ. The Weil and Tate pairings can be used to embed the group E(Fq)
in the multiplicative group of the field Fqk for some integer k (see [80] and [36]). This
reduces the ECDLP in E(Fq) to the DLP in F∗qk . A necessary condition for a cyclic
subgroup of E(Fq) of order N to be embedded in F∗qk is that N divide qk − 1.

Once the ECDLP has been replaced by the DLP in F∗qk , we can hope to use
an index calculus algorithm with subexponential running time 2n

1/3+ε
, where n =

log2(qk). See Coppersmith [29] for the case of even q, and Gordon [46] and Schirokauer
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[103] for the case when q is a prime and k = 1. No algorithm with this running time
is known when q is odd and k > 1, but we adopt the “optimistic” supposition that
the above time estimate can be achieved for the DLP in Fqk for all q and k ≥ 1. Even
with this supposition, k must be less than log2 q, since otherwise the index calculus
algorithm for Fqk will take fully exponential time in log q.

For the very special class of supersingular curves, it is known that k ≤ 6. For
these curves the reduction using the Weil and Tate pairing gives a subexponential-
time algorithm for the ECDLP. However, a randomly generated elliptic curve has an
exponentially small probability of being supersingular; and, as shown in [64] (see also
[6]), for most randomly generated elliptic curves we have k > log2 q.

In addition, if the elliptic curve is defined over a prime field Fp and E(Fp) happens
to have cardinality exactly equal to p, then Satoh and Araki [101], Semaev [106], and
Smart [113] showed how to imbed the elliptic curve group into the additive group of
integers mod p and thereby solve the ECDLP very quickly.

No subexponential-time algorithm is known for the ECDLP except for the special
classes discussed above. Miller [84] (see also [112]) discusses the index calculus method
(see section 3.2) as it might apply to elliptic curve groups. He comments that unlike in
the case of F∗q , where there are natural candidates for the factor base (prime numbers
of small size or small degree irreducible polynomials), there appear to be no likely
candidates in E(Fq). When q is a prime the most natural ones might come from
reduction modulo q of points of small height in Ẽ(Q), Q the field of rational numbers,
for some “lifting” Ẽ of E. (The height of a point is related to the number of bits
needed to represent the point.) However, Miller points out that there are very few
points of small height in Ẽ(Q). Furthermore, even if such a factor base can be found,
finding an efficient method for lifting a point in E(Fq) to a point in Ẽ(Q) looks
hopeless.

In 1998, Silverman [111] proposed a clever variant on index calculus attacks. His
method reversed the order of the stages in index calculus, and for that reason he
called it “xedni calculus” (“index” spelled backwards). This technique to solve the
ECDLP was analyzed in [57] and found to be far slower than the Pollard-ρ method.

In certain cases when q = 2m with composite extension degree m = ln, it is
possible to solve the ECDLP faster by means of the so-called Weil descent method
than by Pollard-ρ. The idea of Weil descent, which is due to G. Frey, is to convert
the DLP on an elliptic curve over F2ln to the DLP on the Jacobian of a genus-g curve
defined over F2l . This approach has been investigated systematically in [40, 81, 58, 78,
51, 82]. The vast majority of elliptic curves cannot be attacked using these methods,
and one can avoid Weil descent entirely by working over prime fields or fields of 2m

elements with m prime.
Recently Gaudry [39] used an index-calculus approach to solve the ECDLP on

a curve defined over a field of order q = pm where m is composite. His method is
asymptotically faster than the Pollard-ρmethod whenm is divisible by a small number
greater than 2. For example, if 3|m, then the running time of Gaudry’s algorithm is
O(p10m/21+ε), whereas the Pollard-ρ method has a running time of O(pm/2+ε).

Strictly speaking, the security of elliptic curve cryptographic systems is usually
based on the assumed intractability of a problem that is slightly weaker than the
ECDLP. For example, security of the elliptic curve Diffie–Hellman key agreement
protocol relies on the presumed intractability of the elliptic curve Diffie–Hellman prob-
lem (ECDHP; see section 6.2). Clearly ECDHP polynomial-time reduces to ECDLP.
Boneh and Lipton [19] proved a partial converse: if the ECDLP cannot be solved in
subexponential time, then neither can ECDHP.
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6.4. Selecting an Appropriate Elliptic Curve. By an “appropriate” elliptic curve,
we mean an elliptic curve E defined over a finite field Fq where the ECDLP in E(Fq)
resists all known attacks. In particular, the following conditions should be satisfied:

(i) To resist the Pollard-ρ attack, #E(Fq) should be divisible by a sufficiently
large prime N (for example, N > 2160).

(ii) To resist the Weil and Tate pairing attacks, N should not divide qk−1 for all
1 ≤ k ≤ C, where C is large enough so that it is computationally infeasible
to find discrete logarithms in F∗qC . (C = 20 suffices in practice.)

(iii) If q is prime, then #E(Fq) must not equal q.
Below we give an overview of three techniques for selecting an appropriate curve.

Using Hasse’s Theorem. Here one uses a curve over Fq that is actually defined
over a much smaller subfield Fq0 .

If E is an elliptic curve defined over Fq0 , then E can be viewed as an elliptic curve
over any extension Fqm0 of Fq0 , and E(Fq0) is a subgroup of E(Fqm0 ). Hasse’s theorem
enables one to compute #E(Fqm0 ) from #E(Fq0) as follows. Let t = q0+1−#E(Fq0).
Then #E(Fqm0 ) = qm0 +1−αm−βm, where α and β are complex numbers determined
from the factorization of 1− tT + q0T

2 = (1− αT )(1− βT ).
This method is most commonly used when q is a power of 2. In that case we

first pick an elliptic curve over a small field F2� , compute #E(F2�) (which is easy to
do by exhaustive counting), and then use Hasse’s theorem to determine #E(Fq) for
q = 2m� for m in an appropriate range (in practice we want m9 > 160). If conditions
(i) and (ii) above (with q = 2m�) are not satisfied for any m in the desired range, then
another curve is selected and the process is repeated. Since the number of elliptic
curves over F2� is relatively small, it may not be possible to construct the desired
curve using this method.

Koblitz [65] observed that if one uses k of small Hamming weight (that is, its
binary expansion has mostly zero-bits) when computing kP , then one gets doubling
of points “almost 3/4 for free” for some anomalous curves over F2l .7 In [114] Solinas
showed how to compute kP very efficiently for arbitrary k on an anomalous curve
defined over F2.

The Complex Multiplication Method. The method of complex multiplication
(CM) allows the choice of an elliptic curve order before the curve is explicitly con-
structed. Thus, orders can be generated so as to satisfy conditions (i)–(iii); a curve is
constructed only when these conditions are met. For elliptic curves over Fp, the CM
method is also called the Atkin–Morain method (see [86]); over F2m , it is called the
Lay–Zimmer method (see [70]).

The CM method generates elliptic curves of a special sort: the values of |t| are
very close to their upper limit 2

√
q, and the curves have complex multiplication by a

small discriminant. While it is conceivable that this feature may render these curves
cryptographically insecure, it must be stressed that no attack is currently known that
takes advantage of this structure.

Choosing a Curve at Random. Another approach to selecting an appropriate
elliptic curve E over Fq is to select random coefficients a, b ∈ Fq of the equation of
E (subject to the constraint that 4a3 + 27b2 �= 0 if q is odd, and b �= 0 if q is even).
One then computes #E(Fq) and factors this number. This process is repeated until
conditions (i)–(iii) are satisfied.

7An elliptic curve over Fq is said to be anomalous if t = 1 or, equivalently, if #E(Fq) = q.
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In the case of elliptic curves over a prime field Fq, a theorem of Lenstra [74] shows
that if the coefficients a and b are selected uniformly at random, then the orders of
the resulting elliptic curves are roughly uniformly distributed in the Hasse interval
[q+ 1− 2

√
q, q+ 1+ 2

√
q]. Similar results for the case of elliptic curves over F2m can

be deduced from the work of Waterhouse [122] and Schoof [105].
With condition (i) in mind, we shall say that a positive integer u is B-almost

prime if it is divisible by a prime greater than u/B. For fixed B and large q, it is
reasonable to assume that the probability of B-almost primality of the order of a
randomly chosen elliptic curve over Fq is roughly equal to the probability of B-almost
primality of a random integer of the same order of magnitude as q. If q is even, then
one considers random even integers of the same order of magnitude as q. For example,
if q = 2173 and we want an elliptic curve whose order is divisible by a prime N > 2160

(so B = 213), we expect to try about 14 curves before finding one whose order is
B-almost prime.

In 1985, Schoof [104] found a polynomial-time algorithm for computing the num-
ber of Fq-points on an elliptic curve defined over Fq in the case when q is odd; the
algorithm was later extended to the case of even q in [63]. Schoof’s algorithm has
a worst-case running time of O((log q)8) bit operations and is rather inefficient in
practice. However, in recent years much faster point-counting algorithms have been
developed, including the Schoof–Elkies–Atkin (SEA) algorithm (see [13, Chapter VII]
and [56]) for elliptic curves over prime fields, and Satoh’s algorithm [100, 35, 102] and
the AGM method (see [38]) for elliptic curves over characteristic two finite fields.

6.5. A Signature Scheme Based on the Weil Pairing. We conclude this section
by describing a signature scheme that, unlike ECDSA, depends in an essential way
on properties of elliptic curves that do not have analogues in the multiplicative group
of a finite field. It is one of the very few elliptic curve cryptosystems that were not
developed by analogy with earlier cryptosystems.8 The signature scheme uses elliptic
curves that have the unusual property that, while the Diffie–Hellman problem (see
section 6.2) is hard, the decisional Diffie–Hellman problem—the problem of determin-
ing whether or not the discrete log of a point is equal to the product of the discrete
logs of two other points—is easy.

Let us consider the simple equation

y2 = x3 − x

over the prime field Fp, p �= 2. When p ≡ 3 (mod 4) this curve is supersingular—it is
an easy exercise to show that the curve has exactly p + 1 points (including ∞). We
get a nonsupersingular curve when p ≡ 1 (mod 4). In the nonsupersingular case, a
formula for the number of points was discovered by Gauss. Namely, write p = A2+B2

as a sum of two squares, with A and B chosen so that A is odd and A+B ≡ 1 (mod 4).
(This is a very easy computational task.) Then the curve has p + 1 − 2A points. If
this number is almost prime (that is, equal to a prime number times a small factor),
then the curve is suitable for the ECDSA and other cryptographic applications.

But it is the other case—when p ≡ 3 (mod 4)—that can be used for the signature
scheme described below. Since −1 is a nonsquare in Fp, by adjoining a square root
i of −1 we get the field of p2 elements Fp2 . It is not hard to see that our curve has

8Other cryptographic protocols that also make crucial use of the Weil and Tate pairings include
the three-party one-round key agreement protocol of Joux [60] and the identity-based public-key
encryption scheme of Boneh and Franklin [18]. The idea of this type of use of the pairings first
appeared in [99].
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Fig. 3 N2 points of order dividing N in E(Fp2 ). The horizontal axis is in E(Fp).

(p + 1)2 points over this larger field. Moreover, if P = (u, v) �= ∞ is an Fp-point,
then the map P �→ P̃ = (−u, iv) takes P to an Fp2-point having the same order as
P . (Notice that if (u, v) satisfies the equation y2 = x3 − x, then so does (−u, iv).) If
P has order N , then there are N2 Fp2-points of order dividing N , namely, all linear
combinations kP + 9P̃ , 0 ≤ k, 9 < N (see Figure 3).

There is a bilinear pairing 〈 , 〉, called the Weil pairing, on this set of N2 points of
order N , such that 〈P, P̃ 〉 = ζ, where ζ is a primitive Nth root of unity in Fp2 . (Notice
that since N divides p+1, it also divides p2− 1, and so Fp2 contains a primitive Nth
root of unity.) This pairing is not hard to compute [85].

As mentioned in section 6.3, in the early 1990s it was noticed that in this situation
it is easy to transform the ECDLP to the DLP in the field Fp2 . Namely, if Q = xP is
the Fp-point whose discrete logarithm x you want to find, it follows from the bilinearity
of the Weil pairing that 〈Q, P̃ 〉 = 〈xP, P̃ 〉 = ζx. Thus, the problem of finding the
discrete log of Q to the base P on the curve is equivalent to the problem of finding
the discrete log of 〈Q, P̃ 〉 to the base ζ in Fp2 . This means that for an n-bit prime p
the ECDLP on this curve can be solved in time 2n

1/3+ε
using the number field sieve

instead of the Pollard-ρ method, which would take time 2( 1
2 +ε)n. (Here we are again

supposing that the number field sieve will be improved for extension fields such as
Fp2 so as to achieve the same order of running time as for prime fields; currently it is
slower on extension fields.) For adequate security one would need to use roughly 500-
bit primes p rather than 160-bit primes p as in the case of nonsupersingular elliptic
curves. For this reason one might think that these supersingular curves are of no use
in cryptography.

But interestingly, it is precisely the supersingular curves that are needed for the
“short signature” scheme devised by Boneh, Lynn, and Shacham [20]. This signature
scheme relies in an essential way on the Weil pairing, which is not an analogue of
anything that is available for the multiplicative group of a finite field.

Here is how the Boneh–Lynn–Shacham signature scheme works on the curve y2 =
x3−x over Fp, p ≡ 3 (mod 4). Assume that p has been chosen so that the DLP in F∗p2

is intractable. However, p is not so large as to make it difficult to perform arithmetic
and compute the Weil pairing in Fp2 . Suppose that Alice wants to sign a message to
Bob that has hash value H, which is taken to be a point in the subgroup of E(Fp)
generated by P (unlike in the ECDSA, where the hash value is an integer less than
N). As in other elliptic curve systems, Alice’s secret key is a random integer x, and
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her public key is the multiple Q = xP of the base point P . Then Alice’s signature is
simply the point S = xH. To verify the signature, Bob computes Q̃ (the image of Q
under the map that takes a point (u, v) to (−u, iv)) and the two pairings 〈H, Q̃〉 and
〈S, P̃ 〉; and he accepts the signature if these two elements of Fp2 are equal. Because of
the bilinearity of the Weil pairing, if Alice formed the signature correctly, then both
are equal to 〈H, P̃ 〉x. Bob accepts the signature because he is confident that only
Alice would have been able to find the point S whose discrete log to the base H is
equal to the discrete log of Q to the base P .

While the implementation of the Boneh–Lynn–Shacham signature requires only
arithmetic in Fp2 , forging a signature requires the ability to solve the Diffie–Hellman
problem on the elliptic curve. Namely, given P , Q, and H, the forger must find a
point S whose discrete log to the base P is equal to the product of the discrete logs
of H and Q. The only way known to do this is to solve the DLP in F∗p2 , and we are
assuming that that is not feasible.

There is a relatively small set of elliptic curves on which the Boneh–Lynn–
Shacham signature scheme can be implemented. If the group of points in which
we are working has order N , then the Weil pairing takes values in the Nth roots of
unity, which lie in an extension field Fqk such that N |qk− 1. For most elliptic curves,
the multiplicative order k of q modulo N has the same order of magnitude as N ,
and so it is infeasible to do arithmetic in the gigantic extension field Fqk—in fact, in
practice it is impossible even to store an element of such a field. In contrast, for the
supersingular curve y2 = x3 − x over Fp with p ≡ 3 (mod 4), we have k = 2, and the
Weil pairing computations take place in Fp2 .

7. Other Systems Based on Discrete Logarithms. In principle, one can con-
struct a public-key cryptographic system based on the DLP in any group, provided
that the DLP is difficult enough to provide security. In addition to the multiplicative
group of finite fields and elliptic curves defined over finite fields, several other groups
have been considered.

7.1. Hyperelliptic and Other Curves. For a curve defined over the complex
numbers, the genus can be interpreted as the number of “handles” in the correspond-
ing surface. An elliptic curve can be represented as a torus (donut-shaped surface),
and a genus-5 curve has the appearance shown in Figure 4.

If the genus g of a curve is greater than 1, then the points on the curve do not
have a natural group law. However, one can consider formal sums of points modulo
the equivalence relation determined by the divisors of functions. These divisor classes
are the elements of the Jacobian of the curve, which has a natural group structure.
These groups generalize the group of points on an elliptic curve.

In general, it is a complicated matter to find good sets of divisor class represen-
tatives and efficient algorithms for the group law on the divisor classes. However,
hyperelliptic curves—those whose equation has a quadratic polynomial in y on the
left side and a polynomial in x of degree 2g+1 on the right—are much easier to work
with. It was hyperelliptic curve Jacobians that were proposed for use in cryptography
in 1989 [62].

The Jacobian of a hyperelliptic curve is closely analogous to the ideal class group
of an imaginary quadratic number field. In fact, the rules for the group law on a
hyperelliptic Jacobian are very similar to the classical rules developed by Gauss for
composition of binary quadratic forms. This is why hyperelliptic curves are conve-
nient to work with. On the other hand, the similarity with class groups also explains
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Fig. 4 A Riemann surface with 5 handles.

why it turned out that for high-genus curves one has subexponential-time index cal-
culus algorithms for the DLP on these groups (see [47, 1]). Even when the genus is
just moderately large, namely, g ≥ 3, Gaudry [37] and Thériault [117] showed that
index calculus methods to solve the DLP are asymptotically faster than the Pollard-ρ
method. The running time for Gaudry’s algorithm on the Jacobian of a genus-g curve
over Fq is of order q2g/(g+1)+ε, whereas Thériault’s algorithm has a running time
of O(q(4g−2)/(2g+1)+ε). Since the running time of the Pollard-ρ method is qg/2+ε, it
follows that for g ≥ 3 a hyperelliptic cryptosystem would require greater keylengths
than elliptic curve cryptosystems for the same level of security. Hyperelliptic cryp-
tosystems for g = 2 have no known security disadvantage compared to elliptic curve
systems. While there have been relatively few practical implementations of hyper-
elliptic cryptosystems, recent work (see [5, 92]) suggests that genus-2 hyperelliptic
curves are only slightly less efficient that their elliptic curve counterparts.

7.2. Class Groups. We mentioned that the Jacobian group of a hyperelliptic
curve is in some ways similar to the ideal class group of a quadratic number field. Such
ideal class groups themselves have been studied for use in cryptographic protocols in
a series of papers by Buchmann, Williams, and others [26, 25, 11, 24]. In the case of
imaginary quadratic fields they use the usual class group. However, in the case of real
quadratic number fields the class group is not suitable, so they instead work with what
they call an infrastructure, where the composition law gives only an approximation
to a group, not a true group.

7.3. XTR. A special case of the Diffie–Hellman system, proposed by Lenstra
and Verheul [73] (see also [45]), has aroused considerable interest; they called their
system XTR, which stands for “efficient compact subgroup trace representation.” As
in section 5, one works in the subgroup G of prime order N in the multiplicative group
of the finite field Fq. We take q = p6, where p is a prime that is ≡ 2 (mod 3), and N
is chosen so that it divides the factor p2− p+1 of p6− 1 (in which case the subgroup
G is not contained in any proper subfield of Fq). In practice N should have roughly
the same bitlength as p; it is recommended that both have about 170 bits, in which
case q has over 1000 bits.

It is not hard to set up the parameters N and p. For example, if r is chosen so
that both r2 − r + 1 and r2 + 1 are prime, then one can set N = r2 − r + 1 and
p = N + r = r2 + 1 (in which case obviously p2 − p+ 1 ≡ r2 − r + 1 ≡ 0 (mod N)).

A crucial innovation in [73] is that the elements of G can be represented using only
2 log2 p bits rather than log2 q = 6 log2 p bits. Moreover, exponentiation can be done
directly with these short representations. This leads to greater efficiency and short key
sizes comparable to those in elliptic curve cryptography. Since the mathematics is rela-
tively simple (as in RSA), Lenstra and Verheul feel that their system “may be regarded
as the best of two worlds, RSA and ECC [elliptic curve cryptography]” [73, p. 2].

The group used in XTR is closely related to the group of points on a certain
supersingular elliptic curve defined over Fp2 . In fact, the Weil pairing embedding in
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[80] maps this elliptic curve group to precisely the XTR group. Since the publication
of [80], the existence of this reduction map from a supersingular elliptic curve to the
multiplicative group of a finite field has traditionally been considered to be a security
weakness arguing against the use of supersingular curves. Thus, some cryptographers
have doubted the wisdom of using a system that is closely related to a version of elliptic
curve cryptography that had been rejected. However, Verheul [120] has pointed out
that the Weil pairing embedding reduces the elliptic curve DLP to the XTR group
DLP, not vice versa; and he believes that the DLP in their group is likely to be strictly
harder than the DLP on the curve. In addition, the Boneh–Lynn–Shacham signature
scheme described in section 6.5 shows that supersingular elliptic curves should not
be automatically ruled out for use in cryptography. By the same token, XTR also
deserves serious study and consideration.

7.4. Connection between the DLP and Integer Factorization. At first glance
it might seem that RSA has no relation to cryptographic systems that are based on
the DLP. However, the integer factorization problem and the DLP are more directly
related than one might have thought. Suppose that we want to factor an RSA modulus
N = p · q, and suppose that we have an algorithm A that finds discrete logarithms
in the multiplicative group G = (Z/NZ)∗ of integers modulo N that are prime to N .
We claim that, with little additional effort, we can use A to find the factors of N .

Namely, let g be a random integer in G. Let k be the order of g modulo N ,
and let k1 and k2 be the orders of g modulo the two prime factors of N ; note that
k = lcm(k1, k2). Because N has not yet been factored, we do not know the values of
k, k1, or k2.

Choose an exponent m that is significantly larger than N—for example, of order
N2—and compute y = gm in G. Now apply the algorithm A to find a discrete
logarithm x of y to the base g in G. Since x and m are both discrete logs of y to the
base g, it follows that m−x is a multiple of k. Because m was chosen to be large, we
may assume that m− x �= 0.

Let 2� be the highest power of 2 dividing m − x. We now compute g(m−x)/2� ,
g(m−x)/2�−1

, . . . , g(m−x)/2, gm−x = 1, and we let u denote the last number in this
sequence that is not equal to 1 modulo N (we take u = 1 if g(m−x)/2� = 1). Let 2i be
the highest power of 2 dividing k1, and let 2j be the highest power dividing k2. It is
easy to see that if i �= j, then u will be a nontrivial square root of 1: u2 ≡ 1 (mod N),
u �≡ ±1 (mod N). In that case we can immediately factor N by taking gcd(N,u±1).

On the other hand, if i = j, then we choose a different value of g and start over.
One can check that for randomly chosen g there is at least a 50% chance that i �= j.
This gives us a probabilistic method of factoring N , given an algorithm A for the
DLP in (Z/NZ)∗.

In the two cases of xedni calculus (see section 6.3) and quantum computation (see
section 10), this reduction of integer factorization to the DLP in (Z/NZ)∗ has been
used to show that a technique originally developed for the DLP can also be used to
factor integers.

8. NTRU. In 1996, a cryptosystem developed by three mathematicians at Brown
University was presented at the “rump session” of the annual Crypto conference in
Santa Barbara (see [52]). It is fundamentally different from both RSA and elliptic
curve cryptography, and it has some efficiency advantages over them. On the other
hand, a history of successful attacks on various versions of NTRU makes many people
hesitant to endorse its use. Whether or not it is ever approved for practical use by
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the industrial standards groups, its construction is clever, interesting, and worthy of
careful study. We shall describe the version of the NTRU encryption scheme in [52].

Three integers N , p, and q are public parameters for the system. Here p is odd,
prime to q, and much smaller than q. For example, the values N = 107, p = 3, q = 64
were suggested in the original proposal at Crypto ’96. In general, it is believed that
the larger N is, the harder the system is to attack.

We work with N -tuples of integers, regarded as polynomials modulo XN−1. This
means that two such N -tuples f =

∑N−1
i=0 fiX

i and g =
∑N−1

i=0 giX
i are multiplied

using the convolution f ∗ g =
∑N−1

k=0 (f ∗ g)kXk with (f ∗ g)k =
∑

i+j≡k (mod N) figj .
We shall be reducing the coefficients of such N -tuples modulo p and also modulo q.
Let L(d, d′) denote the set of polynomials of degree less than N having d coefficients
equal to 1, d′ coefficients equal to −1, and the rest equal to 0. Let Sf = L(d1, d1−1),
Sg = L(d2, d2), and Sϕ = L(d3, d3) for some choice of three integers di < N/2. A
message unit M will be an N -tuple of integers between −(p−1)/2 and (p−1)/2 (also
regarded as a polynomial of degree less than N).

To form her private key Alice randomly selects f ∈ Sf and g ∈ Sg, where f
must have inverses modulo p and modulo q. Let fp and fq, respectively, denote such
inverses. The polynomials f and g are kept secret. Alice’s public key consists of the
polynomial h = fq ∗ g mod q.

To encipher a message unit M , Bob randomly generates ϕ ∈ Sϕ and computes
C = pϕ∗h+M mod q. (This is another example of probabilistic rather than determin-
istic encryption.) When Alice receives C, she uses her secret f to compute a ≡ f ∗C
(mod q), where she chooses the coefficients of a in the interval from −q/2 to q/2. She
then reduces these coefficients (regarded as ordinary integers) modulo p and computes
fp ∗a mod p. We claim that with high probability this is the message M . To see this,
note that modulo q we have a ≡ f ∗(pϕ∗h+M) ≡ f ∗pϕ∗fq∗g+f ∗M ≡ pϕ∗g+f ∗M .
If the parameters were chosen carefully, usually all of the coefficients of the polynomial
pϕ∗g+f ∗M are between −q/2 and q/2, in which case the mod q value of this polyno-
mial is actually the true value. But if Alice knows the true value of pϕ∗g+f ∗M , she
need only reduce modulo p to get f ∗M mod p, and then apply fp to get fp∗f ∗M ≡M
(mod p).

The “moderate security” version of NTRU that was presented at Crypto ’96 (with
the above values for N, p, q) was broken by Coppersmith and Shamir [30], who used
lattice-basis reduction methods [71] to find short vectors in a lattice that arises when
one tries to find the plaintext from the NTRU ciphertext and public key. Subsequently
there have been other successful attacks on certain versions of NTRU (see, for example,
[59] and [54]). In response, the inventors of NTRU have adopted new parameters
and padding schemes that they believe can resist all known attacks. On their web
site (www.ntru.com) they offer valuable cash prizes to anyone who can break their
“challenges” with N -parameter equal to 251, 347, and 503.9

In the first few years after NTRU was proposed, a common criticism was that it
did not have a signature scheme. In 2001 an NTRU signature scheme was proposed
at Eurocrypt [53], but both that scheme and a revised version were broken soon after
(see [42, 43]). A new revised signature scheme is now available on the NTRU web site,
but at present the prospects for commercial adoption of an NTRU-based signature
scheme are unclear.

9For the integer factorization challenges posed by RSA, see www.rsasecurity.com/rsalabs/
challenges/factoring/numbers.html. For the ECDLP challenges posed by Certicom (the main mar-
keter of elliptic curve cryptography), see www.certicom.com.
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9. Cryptosystems Based on Other Algebraic Structures. For certain algebraic
structures natural questions arise that seem to be very difficult to answer. Are two
given elements in a nonabelian group conjugate to one another? Can a given multi-
variate polynomial be expressed as a sum of polynomial multiples of a given set of
polynomials? We now look at cryptographic systems whose security relies upon the
presumed intractability of such problems.

9.1. Noncommutative Structures—Braid Groups. Let G be a group. This
means that we have an associative operation ◦ on elements of G that has an identify
element and inverses. (Often the symbol ◦ is suppressed, and we write g ◦ h as gh.)
This operation is not necessarily commutative, and in this subsection we suppose
that G is a nonabelian group. If the group G arises in a natural way, or if it is given
abstractly by generating elements and relations that they satisfy, it might be very
difficult to determine whether two elements described in different ways are equal. This
problem—called the word problem in group theory—is known to be algorithmically
undecidable [87]. Another question that in general is very difficult is the conjugacy
problem, which asks whether, given two group elements a and b, there exists c ∈ G such
that cac−1 = b. The conjugacy search problem supposes that a and b are conjugate
and asks us to find an element c such that cac−1 = b.

Some early attempts to construct a cryptosystem using the word problem were
due to Magyarik and Wagner [75] and to Van et al. [118]. In the latter paper a one-way
function was constructed by successively inserting relations in the middle of words,
starting from a word formed by two elements of G. But the resulting system was too
cumbersome to be practical (the same was true of the cryptosystem in [75]).

A more recent and more extensively studied cryptographic system based on the
structure of nonabelian groups is the braid group cryptosystem [3, 4]. Following [12],
we first describe the classical braid group. Let E denote the Euclidean plane, and let
FnE denote the set of n-tuples of distinct points of E:

FnE =
{
(z1, . . . , zn)

∣∣∣ zi ∈ E, zi �= zj if i �= j
}
.

Let BnE denote the set of equivalence classes of elements of FnE, where two n-tuples
in FnE are equivalent if one is a permutation of the other. Then the nth braid group is
defined to be the fundamental group G = π1BnE. That is, G is the set of equivalence
classes of continuous maps of a circle to BnE, where two such “loops” are equivalent
if one can be continuously deformed into the other.

More concretely, choose a base point z0 = (z0
1 , . . . , z

0
n) ∈ FnE. Any element of

π1BnE is represented by a loop in BnE that can be lifted to a path in FnE that
starts at z0 and ends at a point obtained by permuting the coordinates of z0. That
is, an element of the braid group is represented by a continuous function f(t) =
(f1(t), . . . , fn(t)), 0 ≤ t ≤ 1, such that f(0) = z0 and f(1) is a permutation of z0.
The union of the graphs of fi(t), i = 1, . . . , n, in E × [0, 1] is called a geometric braid.
Figure 5, taken from [12, p. 6], shows a geometric braid for n = 4.

Two braids A and A′ are equivalent if there is a continuous sequence of braids
A(s), 0 ≤ s ≤ 1, such that A(0) = A and A(1) = A′. The identity braid is given
by the constant function f(t) = z0, and the inverse of a braid given by f(t) is the
“backwards” braid g(t) given by g(t) = σ−1f(1− t), where σ is the permutation such
that f(1) = σ(z0). The composition of two braids corresponding to functions f and
g is given by the function h(t) defined as follows: h(t) = f(2t) for 0 ≤ t ≤ 1/2,
h(t) = σ(g(2t− 1)) for 1/2 ≤ t ≤ 1.
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(z0
2 , 0) (z0

3 , 0)(z0
1 , 0) (z0

4 , 0)

Fig. 5 A geometric braid for n = 4.

We now describe a key exchange system whose security is based on the presumed
intractability of the conjugacy search problem in the braid group (see [4]). Here is
how it works. Alice selects m elements a1, . . . , am of G. These elements are publicly
known. She then randomly generates a secret sequence j1, . . . , j� of indices between 1
and m, and sets A = aj1 · · · aj� . Bob similarly selects b1, . . . , bm and a secret element
B = bk1 · · · bk� . Next, Alice conjugates Bob’s publicly known bi by her secret element
A: xi = A−1biA; and Bob does likewise: yi = B−1aiB. Alice sends the m-tuple
(x1, . . . , xm) to Bob, and Bob sends (y1, . . . , ym) to Alice. The shared key is the
commutator A−1B−1AB, which Alice calculates as follows:

A−1yj1 · · · yj� = A−1B−1aj1 · · · aj�B = A−1B−1AB;

and which Bob calculates as follows:

(B−1xk1 · · ·xk�)−1 = (B−1A−1bk1 · · · bk�A)−1 = (B−1A−1BA)−1.

This is a clever method of arriving at a shared key. Unfortunately, it seems to
be vulnerable to certain types of attacks. Hughes [55] has shown that the existence
of a map, called the Burau representation, from the braid group to a general linear
group often enables one to use linear algebra to find the secret A and B. The attack is
complicated by the fact that the Burau representation is not faithful—in other words,
many different braids are mapped to the same matrix—but Hughes shows that the
parameters suggested in [4] are insecure.

9.2. Hidden Monomials and Polly Cracker. In this subsection we describe two
different public-key cryptosystems that are based on commutative algebra. The first
one is an example of various systems developed by Patarin [90, 91] after he broke a
simpler version due to Imai and Matsumoto (see [89]). This cryptosystem, which has
not yet been broken, is based on the observation that a system of n linear equations
in n unknowns is easy to solve, while a system of n quadratic equations is not.

Let q be a power of 2, and let {β1, . . . , βn} be a basis for Fqn over Fq. An
element of Fqn will be written in boldface, and the corresponding n-vector over Fq
with respect to the basis {β1, . . . , βn} will be denoted by underlining. Both plaintext
and ciphertext message units will be n-vectors over Fq, denoted x and y, respectively.
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To set up her “hidden monomial” cryptosystem, Alice first chooses two secret
affine transformations,

(2) u = Ax+ c, v = By + d,

where A and B are fixed invertible n × n-matrices over Fq and c and d are fixed
n-vectors. Alice next chooses an integer h of the form

h = qα1 + qα2 − qβ1 − qβ2

that is prime to qn − 1, and she computes h′ such that hh′ ≡ 1 (mod qn − 1). She
also chooses secret nonzero elements r, s ∈ Fqn . The enciphering function from x to
y is based on the following relation between the corresponding u and v (here v is
nonzero):

(3) uh = r +
s
v
, so that u =

(
r +

s
v

)h′
.

Equivalently, the relation between u and v is

uq
α1 uq

α2 v = uq
β1 uq

β2 (rv + s).

Alice uses this relation to set up her public key as follows. Notice that for any fixed
k the map from Fqn to Fqn given by u �→ uq

k

is Fq-linear, and so is given by a matrix
with respect to the basis {β1, . . . , βn}. Similarly, for any fixed k, 1 ≤ k ≤ n, the
map given by u �→ βku is Fq-linear. Thus, the left-hand side uq

α1 uq
α2 v of the above

relation can be expressed in terms of the basis as a sum
∑

pj(u1, . . . , un, v1, . . . , vn)βj ,
where each pj is a polynomial of total degree 3 in the coordinates of u and v. This
polynomial is linear in the vi and is of total degree 2 in the ui. Similarly, the right-
hand side uq

β1 uq
β2 (rv+s) can be written in the same way, where again the coefficients

of the βj are polynomials of degree 1 in the vi and degree 2 in the ui. Alice can easily
compute the coefficients of the polynomials on the left and right. Finally, she uses her
affine relations (2) to transform these polynomials into polynomials in the plaintext
x and ciphertext y that are quadratic in the xi and linear in the yi. By equating
the polynomial coefficients of each βj , Alice arrives at a set of n polynomial relations
among the 2n variables x1, . . . , xn, y1, . . . , yn.

Alice’s public key consists of these n polynomial relations of total degree 3 con-
necting the coordinates of the plaintext and ciphertext. She keeps the matrices A,B,
the vectors c, d, and the constants r, s all secret; and if she wants, she can also keep
her basis {β1, . . . , βn} and the integer h secret as well. The only information that
Bob needs is the coefficients of the polynomial relations between x and y.

When he sends a message, Bob must find the ciphertext y from x. Since the
degree-3 polynomials are linear in the yi, this involves solving a system of n linear
equations in n unknowns, so Bob can quickly find the ciphertext. An eavesdropper,
who knows only the ciphertext and the public key, is faced with the difficult task of
solving a system of n quadratic equations in n unknowns. Alice, of course, can find
x from y in a much easier way. Namely, she uses the affine relation v = By + d to
determine v from y; then she goes directly from v to u using her “hidden monomial”
relation (3); and, finally, she goes from u to x by inverting the affine map u = Ax+ c.

The above cryptosystem is a special case of a broad class of constructions due to
Patarin. Most of his systems remain unbroken, but there has not yet been enough
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analysis of their security for one to be completely confident. There are also questions
of efficiency that remain to be resolved. For example, in the system just described
the public key is large, consisting of O(n4) coefficients in Fq.

Other efforts at constructing public-key cryptosystems using commutative algebra
have been based on such hard problems as ideal membership (determining whether
a given polynomial belongs to the ideal generated by a fixed set of polynomials) and
Groebner basis (finding a certain best possible set of generating polynomials for an
ideal). We give a simple example of such a system (called “Polly Cracker” by Fellows)
[34], which, however, has recently been successfully attacked [41].

Let Fq be a finite field, and let T = {ti}ni=1 be a set of variables. Alice wants
to be able to receive messages M ∈ Fq from Bob. Her secret key is a random vector
y ∈ Fnq , and her public key is a set of polynomials B = {qj} in Fq[T ] such that
qj(y) = 0 for all j. To send the message M , Bob generates an element p =

∑
hjqj

of the ideal J ⊂ F[T ] generated by B, and sends her the polynomial C = p +M .
When Alice receives the ciphertext polynomial C, she finds M by evaluating it at y:
C(y) = p(y) +M =M .

Note that it is very easy for Alice to construct a pair

(private key = y, public key = B).

Namely, she generates a random y, chooses arbitrary polynomials q̃j , and sets qj =
q̃j − q̃j(y). But it is an open question whether she can choose the keys in such a way
as to avoid attacks such as [41].

10. Quantum Cryptography and Quantum Computation. Quantum cryptog-
raphy has a very different flavor from all of the types of public-key cryptography
discussed above, because it is based not on a mathematical one-way function, but
rather on a process which is known to be one-way by some basic laws of physics. The
idea was first proposed by Brassard and Bennett in the early 1980s [9, 8], and at
present there is at least one web site (www.magiqtech.com) claiming to have commer-
cial products for quantum key distribution.

Suppose that Alice and Bob want to agree upon a secret key—a random sequence
of bits—for use in a symmetric-key cryptosystem. Here is how they can use quantum
mechanics to do that, while at the same time determining whether or not an unautho-
rized person (Eve) has been eavesdropping on their communications. Alice randomly
chooses a polarization (that is, a line in space and one of the two directions along
that line) for each photon that she sends to Bob. According to a basic principle of
quantum mechanics, if Bob measures a photon along the same line that Alice chose,
the photon will keep its polarization. If he measures the photons along randomly
chosen lines, on the average he will measure the correct direction only half the time.

In order to determine the key, for each photon, Bob chooses a line along which
to measure its polarization. He then sends Alice a list of the lines he used. Alice
informs him which of the lines agree with the ones she used for the polarization. Bob
knows the correct direction of polarization of that subsequence of photons. Some of
the photons in this subsequence are used to form the sequence of bits for the shared
key. In order to see whether or not an adversary is eavesdropping, Alice and Bob
compare the photons in the subsequence that are not being used for the key. If Eve
has been measuring the polarizations, she will have altered many of the values by
measuring them, and Bob and Alice will immediately detect the discrepancy. On the
other hand, if the sequences they compare are in agreement, they can be confident
that no one has been intercepting their communications, and their key is secure.
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There is a second application of quantum mechanics to cryptography that is of
a very different sort: quantum computation. The idea, which was first developed in
detail by Shor [109], is to construct a computing device that performs quantum me-
chanical experiments in order to test different alternatives simultaneously. In certain
situations, such a device can sift through an exponential number of possibilities in
polynomial time.

It is a challenging task to develop a quantum algorithm for the types of problems
used in cryptography. The most important problems for which this has been done
are integer factorization and discrete logarithms (including elliptic curve discrete log-
arithms [96]). Actually, the basic type of problem that a quantum device can tackle
is the discrete logarithm. The proof that it can also factor integers [109] is based on
the technique in section 7.4 for using a discrete log algorithm in order to factor an
integer. So far no one has found quantum algorithms for hidden monomial, NTRU,
or braid group cryptosystems. If quantum computing ever becomes practical, it will
then be necessary to have cryptosystems available for real-world use (and approved by
the industrial standards bodies) that are not based on integer factorization or discrete
logarithms.

11. Further Reading. There are many books devoted to algorithmic number the-
ory and public-key cryptography. A starting point for obtaining the relevant mathe-
matical background is the book by Koblitz [66]. Detailed treatments of topics in algo-
rithmic number theory such as primality testing and integer factorization are given by
Cohen [28] and Crandall and Pomerance [31]. Comprehensive books on cryptography
include those by Menezes, van Oorschot, and Vanstone [83], Stinson [115], and Mao
[77]. The mathematics behind elliptic curve cryptography is well explained by Wash-
ington [121]. See Hankerson, Menezes, and Vanstone [48] for an extensive coverage of
implementation aspects of elliptic curve cryptography.
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